
Programming Language Enhancements
The following programming language enhancements are provided with Natural Version 4.1:

New Statements
Enhanced Statements
Size of Alphanumeric and Binary Variables
Size of Data Elements
Dynamic Variables
Object Handles
Optional Parameters
SPECIFIED Option in Logical Condition
MASK Option in Logical Condition
System Variables Now Available under Natural for Mainframes
New System Variables
Changed System Variable
More Precise Results for Floating Point Conversion
Precision of Floating Point Format Results of an Arithmetic Operation Improved
Arithmetic Operations with Date and Time Enhanced
Evaluation of SQRT for (Un)Packed Number Enhanced
Substring Evaluation in MASK Corrected
New Compiler Options

1Copyright Software AG 2003

Programming Language EnhancementsProgramming Language Enhancements

New Statements
The following new Natural statements are available with Natural Version 4.1:

EXPAND
REDUCE
RESIZE

EXPAND Statement

The new statement EXPAND is used to increase the size of the currently allocated storage of a dynamic variable.

In the statement, you specify the name of the variable and its desired size. If that size is smaller than the size of the
storage currently allocated to that dynamic variable, the EXPAND statement has no effect.

For further information, see Dynamic Variables.

REDUCE Statement

The new statement REDUCE is used to reduce the size of the used storage (available to the programmer).

In the statement, you specify the name of the variable and its desired size.

The storage allocated to the dynamic variable beyond the specified size may be released at any time, when the
statement is executed or at a later time.

If the currently used size (as contained in the new system variable *LENGTH) of the dynamic variable is greater
than the given size, *LENGTH is set to the specified size and the content of the variable is truncated (but not
modified). If the specified size is larger than the size of the storage currently allocated to the dynamic variable, the
REDUCE statement will be ignored.

For further information, see Dynamic Variables.

RESIZE Statement

The new statement RESIZE is used to adjust the length of a dynamic variable to exactly the size specified.

If the specified size is smaller then the used size (as indicated by *LENGTH) of the dynamic variable, the used
size is reduced accordingly.
If the specified size is larger than the size of the storage currently allocated to the dynamic variable, the size of
the storage allocated to the dynamic variable is increased. The currently used size (as indicated by *LENGTH)
of the dynamic variable is not affected and remains unchanged.
If the specified size is the same as the size of the storage currently allocated to the dynamic variable, the
execution of the RESIZE statement has no effect.

For further information, see Dynamic Variables.

Copyright Software AG 20032

Programming Language EnhancementsNew Statements

Enhanced Statements
The following Natural statements have been enhanced:

CALL
CALLNAT
CLOSE PRINTER
DEFINE DATA
DEFINE PRINTER
DEFINE WORK FILE
ESCAPE
FIND
HISTOGRAM
INPUT
PERFORM
READ
SEND METHOD

CALL Statement

The CALL statement provides the following enhancements:

The limit of 32 KB for the maximum length per parameter has been removed.
A new option, INTERFACE4, provides for enhanced parameter descriptions. Also, with this option, the number
of parameters to be passed to the invoked non-Natural program (currently 40) has been raised to 32767.

CALLNAT Statement

The CALLNAT statement provides the following enhancements:

Notation " nX" - see Optional Parameters.
Parameter Transfer with Dynamic Variables - see Dynamic Variables.

CLOSE PRINTER Statement

The CLOSE PRINTER statement provides a new option that enables the hardcopy printer to be specified as Printer 0
to close the printer.

DEFINE DATA Statement

The DEFINE DATA statement provides two new options to be specified in the parameter-data-definition of a
DEFINE DATA PARAMETER statement:

DYNAMIC If you define a parameter as DYNAMIC, its length will be determined at runtime. For further
information, see Dynamic Variables.

OPTIONAL By default, a parameter is defined without OPTIONAL, which means that a value must be passed
from the invoking object to the parameter. If you define a parameter as OPTIONAL, a value can -
but need not - be passed from the invoking object to this parameter. For further information, see
Optional Parameters.

3Copyright Software AG 2003

Enhanced StatementsProgramming Language Enhancements

DEFINE PRINTER Statement

The DEFINE PRINTER statement provides a new option that enables the hardcopy printer to be specified as Printer
0 to define a printer.

DEFINE WORK FILE Statement

The DEFINE WORK FILE statement provides a new option TYPE UNFORMATTED allows you to specify that a
work file is to be used in stream mode instead of the other new option FORMATTED for record-oriented files.

ESCAPE Statement

The ESCAPE statement provides the following enhancements:

ESCAPE TOP REPOSITION
ESCAPE MODULE

ESCAPE TOP REPOSITION

The new option ESCAPE TOP REPOSITION allows you to dynamically reposition within a READ statement loop
that is being executed, and restart the READ loop with another start value.

When an ESCAPE TOP REPOSITION statement is executed, Natural immediately continues processing at the top of
the active READ loop, using the current value of the search variable as a new start value.

At the same time, ESCAPE TOP REPOSITION resets the system variable *COUNTER to "0".

ESCAPE TOP REPOSITION can be specified within a READ statement loop accessing an Adabas, DL/I or VSAM
database. The READ statement concerned must contain the option WITH REPOSITION.

ESCAPE MODULE

This new option ESCAPE MODULE allows you to stop an inline subroutine and continue processing with the
programming object which has invoked the object containing the inline subroutine.

When used within a subroutine, the existing option ESCAPE ROUTINE causes processing to continue with the
statement following the PERFORM statement that has invoked the subroutine. In the case of an inline subroutine,
this would be within the same programming object. If nested subroutines are used, that is, if the PERFORM
statement is itself contained within another inline subroutine, it would take a lot of coding to leave the active
programming object entirely.

The new option ESCAPE MODULE, however, will not only stop the processing of the inline subroutine, but also of
the programming object containing the inline subroutine; processing will then continue with the object invoking that
programming object. This will be particularly useful when multiple nested inline subroutines are used, as a single
ESCAPE MODULE statement will suffice to leave the programming object altogether.

ESCAPE MODULE is only relevant in inline subroutines. In external subroutines, subprograms and invoked
programs, it has the same effect as ESCAPE ROUTINE.

As with ESCAPE ROUTINE, loop-end processing will be performed. If you specify the keyword IMMEDIATE , no
loop-end processing is performed.

Copyright Software AG 20034

Programming Language EnhancementsDEFINE PRINTER Statement

FIND Statement

The FIND statement provides the following enhancement:

Multi-Fetch

Traditionally, Natural retrieves database records one by one. However, Adabas’s Multi-Fetch functionality makes it
possible to retrieve more than one database record per database access.

To make use of this functionality, the FIND statement provides a new MULTI-FETCH option. With this option, you
are able to specify the number of records to be retrieved per database access when the statement is executed.

The MULTI-FETCH option is available for accesses to Adabas databases only. For database updates, the
MULTI-FETCH option cannot be used.

MULTI-FETCH only affects the way in which the records are retrieved from the database. The program’s
record-processing logic is not affected; that is, the number of FIND processing loops executed is the same as without
MULTI-FETCH, and the records are still processed one by one.

HISTOGRAM Statement

The HISTOGRAM statement provides the following enhancements:

Dynamic Change of Reading Direction
New Comparators
Multi-Fetch
End of Range Condition (ENDING AT) Controlled by Database

Dynamic Change of Reading Direction

With Natural Version 3.1, the database field values to be retrieved by a HISTOGRAM statement could be read in
ascending or descending sequence. This is determined by the keywords ASCENDING and DESCENDING in the
SEQUENCE clause. Also, the VARIABLE option allows you to determine the reading direction at runtime.
However, once the HISTOGRAM statement is executed, you cannot change the reading direction.

With Natural Version 4.1, the new keyword DYNAMIC is provided for the SEQUENCE clause: It allows you to
change the reading direction from ascending to descending (or vice versa) within an active HISTOGRAM processing
loop that is being executed, without having to restart the loop. After the keyword DYNAMIC, you specify a variable
to which the value"A" (for "ascending") or "D" (for "descending") can be assigned. The DYNAMIC option is
available for accesses to Adabas and DB2 databases.

New Comparators

In addition to the comparators EQUAL TO, STARTING FROM and ENDING AT, Natural Version 4.1 provides the
possibility to specify start/end values with the following options:

LESS THAN
GREATER THAN
LESS EQUAL
GREATER EQUAL

These new comparators are available for accesses to Adabas, DB2, DL/I and VSAM databases.

5Copyright Software AG 2003

FIND StatementProgramming Language Enhancements

Multi-Fetch

Traditionally, Natural retrieves database records one by one. However, Adabas’s Multi-Fetch functionality makes it
possible to retrieve more than one database record per database access.

To make use of this functionality, the HISTOGRAM statement provides a new MULTI-FETCH option. With this
option, you are able to specify the number of records to be retrieved per database access when the statement is
executed.

The MULTI-FETCH option is available for accesses to Adabas databases only.

MULTI-FETCH only affects the way in which the records are retrieved from the database. The program’s
record-processing logic is not affected; that is, the number of HISTOGRAM processing loops executed is the same
as without MULTI-FETCH, and the records are still processed one by one.

End of Range Condition (ENDING AT) Controlled by Database

With Natural Version 3.1, if the ENDING AT clause was used to limit the range of values to be read, Natural
internally read one value beyond the specified ENDING AT value in order to determine the end of the range to be
read. This was necessary due to restrictions inherent in the underlying databases.

With Natural Version 4.1, these restrictions no longer apply, and the ENDING AT value can now be determined by
the accessed databases themselves. This means that Natural is able to read the values only until including the
specified ENDING AT value, but not beyond.

As this may lead to different results and so as not confuse the "old" end-value mechanism with the "new" one, a new
keyword, TO, is provided for the specification of the database-controlled end value. The existing ENDING AT
clause is not affected and continues to yield the same results as before.

The new keyword TO is available for Adabas, DB2, DL/I and VSAM databases.

INPUT Statement

The INPUT statement provides the following enhancements:

Selection Boxes
Edit Mask Free Mode

Selection Boxes

Natural Version 4.1 provides the possibility to attach selection boxes to input fields. These selection boxes are
similar to those used in graphical user interfaces and are a comfortable alternative to helproutines attached to fields.

To assign a selection box to a field, the INPUT statement provides the new field attribute SB. With SB, you specify
the contents of the selection box, that is, the values, or the name of an array field that provides the values, to be
displayed within the selection box. The size and position of the selection box are determined automatically (using the
same algorithm as for help windows).

For a field for which the field attribute SB is specified, a selection-box indicator "V" is displayed next to the field.
To invoke the selection box, the user positions the cursor on the "V" and presses the help key. The selection box is
then displayed as a window on the screen. If the list of values within the selection box is longer than the selection
box itself, the user can scroll by placing the cursor on the "More/Top/Bottom" lines of the selection box and pressing
ENTER. To select a value from the selection box, the user positions the cursor on the desired value and presses
ENTER. The selected value is then copied into the input field.

Copyright Software AG 20036

Programming Language EnhancementsINPUT Statement

The field attribute SB is only available for alphanumeric fields.

Edit Mask Free Mode

The edit mask free mode is an alternative INPUT mode for entering numeric fields with an edit mask use. When
activated (either at session startup with the new profile parameter EMFM or in a running Natural session via the
terminal command %FM+), all or some of the edit mask insert characters may be left out from input.

PERFORM Statement

The PERFORM statement provides the following enhancements:

Notation " nX" - see Optional Parameters.
Parameter Transfer with Dynamic Variables - see Dynamic Variables.

READ Statement

The READ statement provides the following enhancements:

Dynamic Change of Reading Direction
New Comparators
Multi-Fetch
End of Range Condition (ENDING AT) Controlled by Database
WITH REPOSITION for Non-VSAM Databases

Dynamic Change of Reading Direction

With Natural Version 3.1, the records to be retrieved by a READ statement could be read in ascending or descending
sequence. This is determined by the keywords ASCENDING and DESCENDING in the
sequence/range-specification. Also, the VARIABLE option allows you to determine the reading direction at
runtime. However, once the READ statement is executed, you cannot change the reading direction.

With Natural Version 4.1, the new keyword DYNAMIC is provided for the sequence/range-specification: It enabes
you to change the reading direction from ascending to descending (or vice versa) within an active READ processing
loop that is being executed, without having to restart the loop. After the keyword DYNAMIC, you specify a variable
to which the value"A" (for "ascending") or "D" (for "descending") can be assigned. The DYNAMIC option is
available for accesses to Adabas and DB2 databases.

New Comparators

In addition to the field/value comparators EQUAL TO, STARTING FROM and ENDING AT, Natural Version 4.1
provides the possibility to specify start/end values with the following options:

LESS THAN
GREATER THAN
LESS EQUAL
GREATER EQUAL

These new comparators are available for accesses to Adabas, DB2, DL/I and VSAM databases.

Multi-Fetch

Traditionally, Natural retrieves database records one by one. However, Adabas’s Multi-Fetch functionality makes it
possible to retrieve more than one database record per database access. To make use of this functionality, the READ
statement provides a new MULTI-FETCH option. With this option, you are able to specify the number of records to
be retrieved per database access when the statement is executed. The MULTI-FETCH option is available for

7Copyright Software AG 2003

PERFORM StatementProgramming Language Enhancements

accesses to Adabas databases only. For database updates, the MULTI-FETCH option cannot be used.

MULTI-FETCH only affects the way in which the records are retrieved from the database. The program’s
record-processing logic is not affected; that is, the number of READ processing loops executed is the same as
without MULTI-FETCH, and the records are still processed one by one.

End of Range Condition (ENDING AT) Controlled by Database

With Natural Version 3.1, if the ENDING AT clause was used to limit the range of values to be read, Natural
internally read one value beyond the specified ENDING AT value in order to determine the end of the range to be
read. This was necessary due to restrictions inherent in the underlying databases.

With Natural Version 4.1, these restrictions no longer apply, and the ENDING AT value can now be determined by
the accessed databases themselves. This means that Natural is able to read the values only until including the
specified ENDING AT value, but not beyond.

As this may lead to different results and so as not confuse the "old" end-value mechanism with the "new" one, a new
keyword, TO, is provided for the specification of the database-controlled end value. The existing ENDING AT
clause is not affected and continues to yield the same results as before.

The new keyword TO is available for Adabas, DB2, DL/I and VSAM databases.

WITH REPOSITION for Non-VSAM Databases

Due to the introduction of the new ESCAPE statement option TOP REPOSITION, the WITH REPOSITION option
of the READ statement is no longer restricted to VSAM databases, but is also available for Adabas and DL/I
databases.

SEND METHOD Statement

The SEND METHOD statement provides the following enhancement:

Notation " nX" - see Optional Parameters.

Size of Alphanumeric and Binary Variables
With Natural Version 4.1, the maximum possible size of an alphanumeric variable (Format A) has been increased
from 253 bytes to 1 GB. The maximum possible size of a binary variable (Format B) has been increased from 126
bytes to 1 GB.

Size of Data Elements
With Natural Version 4.1, the maximum possible size of a single data element (array or indexed group) has been
increased from 32 KB to 1 GB.

Copyright Software AG 20038

Programming Language EnhancementsSize of Alphanumeric and Binary Variables

Dynamic Variables
In addition to removing the size limitations for alphanumeric and binary variables (see Size of Alphanumeric and
Binary Variables), Natural Version 4.1 makes it possible to allocate the length of such variables dynamically at
runtime.

As the maximum size of large data structures (for example, pictures, sounds, videos) may not be known exactly at
the time an application is developed, Natural provides for the definition of alphanumeric and binary variables with
the attribute DYNAMIC. The value space of variables which are defined with this attribute is extended dynamically
at runtime when it becomes necessary (for example, during an assignment operation: #picture1 := #picture2). This
means that large binary and alphanumeric data structures may be processed in Natural without the programmer
having to define a length at development time.

The new Natural system variable *LENGTH is provided to obtain the value space (number of bytes) currently used
and available to the programmer for a given dynamic variable at runtime.

For performance optimization and also to avoid problems with too much or too little allocated memory space, the
new statements EXPAND, REDUCE and RESIZE have been introduced. If the space allocated for a dynamic
variable is no longer needed, the REDUCE or the RESIZE statement can be used to reduce or to resize the allocated
space (to zero or any other desired size). If the upper limit of memory usage is known for a specific dynamic
variable, the EXPAND statement can be used to set the space used for the dynamic variable to this specific size.

Dynamic variables can be used, for example, in CALLNAT or PERFORM statements. It is also possible to define
and use arrays of dynamic variables.

See also Large and Dynamic Variables and Fields in the Natural Statements documentation.

Object Handles
With Natural Version 4.1, it is possible to define object handles within a global data area or as
application-independent variables (AIVs).

9Copyright Software AG 2003

Dynamic VariablesProgramming Language Enhancements

Optional Parameters
Natural Version 4.1 supports the use of optional parameters in subprograms, external subroutines and dialogs.
Optional parameters may be used to expand an existing subprogram (for example, to provide additional parameters)
without having to change all objects that use this subprogram.

An optional parameter is a field defined with the keyword OPTIONAL in the DEFINE DATA PARAMETER
statement of an invoked object (subprogram, external subroutine or dialog). To such a field, a value can - but need
not - be passed from an invoking object.

In the invoking statement (CALLNAT , PERFORM or SEND METHOD), the notation nX is used to indicate
optional parameters for which no values are passed. With nX you specify that the next n parameters are to be
skipped; that is, for the next n parameters no values are passed to the invoked object.

Example:

Subprogram:

DEFINE DATA PARAMETER
1 #P1 (A10)
1 #P2 (A10) OPTIONAL
1 #P3 (A10)
1 #P4 (A10) OPTIONAL
1 #P5 (A10) OPTIONAL
END-DEFINE
...

Invoking Object:

CALLNAT ’MY-SUB’ #A #B #C #D #E

or

CALLNAT ’MY-SUB’ #A 1X #C 2X

or

CALLNAT ’MY-SUB’ #A #B #C 1X #E

To check in the invoked object whether or not an optional parameter has received a value from the invoking object,
the new SPECIFIED option to be used in a logical condition is available.

Copyright Software AG 200310

Programming Language EnhancementsOptional Parameters

SPECIFIED Option in Logical Condition
With the new SPECIFIED option to be specified in a logical condition, you are able to check whether or not an
optional parameter in an invoked object (subprogram, external subroutine or dialog) has received a value from the
invoking object.

If you process an optional parameter which has not received a value, this will cause a runtime error. To avoid such
an error, you use the SPECIFIED option in the invoked object to check whether an optional parameter has received a
value or not, and then only process it if it has.

Example:

IF #OPTFIELD1 SPECIFIED THEN ... ELSE ...
IF #OPTFIELD2 NOT SPECIFIED THEN ... ELSE ...

For a field not defined as OPTIONAL, the SPECIFIED condition will always be "TRUE".

MASK Option in Logical Condition
With Natural Version 4.1, it is possible to check positions of a field for a date in Julian format. This will be
particularly useful when a MASK option is used in conjunction with a MOVE EDITED statement that uses a Julian
date in its edit mask.

See also the COMPOPT system command for enhancements related to the MASK option.

11Copyright Software AG 2003

SPECIFIED Option in Logical ConditionProgramming Language Enhancements

System Variables Now Available under Natural for
Mainframes
The following Natural system variables that have been available under Natural for Windows and UNIX are now also
provided under Natural Version 4.1:

System Variable Format
Default
DISPLAY
Header

Description of Contents

*CPU-TIME I4 CPU-TIME

CPU time currently used by the Natural process in units of 10 ms.
In environments where this variable is not supported, it contains the
value 0.

For details, refer to the Natural Variables documentation.

*DATV A11 DATV
Current date in the format dd-mon-yyyy
(where mon is the leading three bytes of the month’s name as in
*DATG.

*DATVS A9 DATVS Current date in the format ddmonyyyy (similar to *DATV).

*HOSTNAME A64 HOSTNAME Name of the machine on which Natural is running.

*LENGTH(field) I4 LENGTH
Currently used length (in bytes) of a field defined as a dynamic
variable. See also Dynamic Variables.

*NATVERS A8 NATVERS
Natural version excluding patch level information in the format
rr.vv.ss, where r=release, v=version, s=system maintenance level
(example: 04.01.01)

*PARM-USER A253 PARM-USER
Name of the parameter module currently in use (contains blanks if
PARM=name has not been specified as a dynamic parameter).

*PATCH-LEVEL A8 PATCH-LEVEL Current Natural patch-level number as a string.

*PID A32 PID Unique identifier for the Natural session.

New System Variables
The following Natural system variables are new as of Natural Version 4.1:

System Variable Format
Default
DISPLAY
Header

Description

*LINE I4 LINE Contains the number of the line currently executed in a Natural object.

*TP A8 TP
Contains the name of the TP subsystem under which Natural is running.
This value is supplied by the operating system and may be subject to
change.

*TPVERS A8 TPVERS
Contains the version of the TP subsystem under which Natural is running.
This value is supplied by the operating system and may be subject to
change.

Copyright Software AG 200312

Programming Language EnhancementsSystem Variables Now Available under Natural for Mainframes

Changed System Variable
System Variable *LANGUAGE

The value "0" of the system variable *LANGUAGE which was tolerated in earlier Natural for Mainframes versions
has been dropped to ensure compatibility with Natural for UNIX and Windows.

More Precise Results for Floating Point Conversion
The format conversion for the transfer of data from literals (as in assignments, INIT or CONST clauses),
alphanumeric fields (as in the VAL system function) or packed numeric fields to floating-point fields has been
improved. This may in some cases lead to different results. However, these results will be of a greater precision than
with Natural Version 3.1.

Example:

F(F8) = 5.4E-79

Result with Version 3.1: +5.399999999999999E-79
Result with Version 4.1: +5.400000000000000E-79

Precision of Floating Point Format Results of an Arithmetic
Operation Improved
For arithmetic operations with a result of format/length F4 in previous Natural versions, format/length F8 is now
being used to improve the precision of the results.

Arithmetic Operations with Date and Time Enhanced
Multiplication and division are now allowed on intermediate results of additions and subtractions of formats D (date)
and T (time).

Evaluation of SQRT for (Un)Packed Number Enhanced
The evaluation of the mathematical system function SQRT for packed and unpacked numbers has been enhanced to
improve performance and precision of the results.

13Copyright Software AG 2003

Changed System VariableProgramming Language Enhancements

Substring Evaluation in MASK Corrected
The evaluation of a SUBSTRING clause in the MASK option has been corrected. This may lead to different results
if the evaluated substring is shorter than the specified mask.

Example:

IF SUBSTR(A10, 2, 3) = MASK(....) THEN

The length of the evaluated substring is 3, but the mask has length 4.

Result with Version 3.1: TRUE

Result with Version 4.1: FALSE

New Compiler Options
The following new compiler options have been introduced:

MASKCME The check for the mask character YYYY can be made compatible with MOVE EDITED.

NMOVE22
Assignment of numeric variables of same length and precision may be performed as with Natural
Version 2.2.

TQMARK The check for the translation of quotation mark.

V31COMP Disable new syntax of Natural Version 4.1.

For further information, refer to system command COMPOPT.

Copyright Software AG 200314

Programming Language EnhancementsSubstring Evaluation in MASK Corrected

	Programming Language Enhancements
	New Statements
	EXPAND Statement
	REDUCE Statement
	RESIZE Statement

	Enhanced Statements
	CALL Statement
	CALLNAT Statement
	CLOSE PRINTER Statement
	DEFINE DATA Statement
	DEFINE PRINTER Statement
	DEFINE WORK FILE Statement
	ESCAPE Statement
	ESCAPE TOP REPOSITION
	ESCAPE MODULE

	FIND Statement
	Multi-Fetch

	HISTOGRAM Statement
	Dynamic Change of Reading Direction
	New Comparators
	Multi-Fetch
	End of Range Condition †ENDING AT‡ Controlled by Database

	INPUT Statement
	Selection Boxes
	Edit Mask Free Mode

	PERFORM Statement
	READ Statement
	Dynamic Change of Reading Direction
	New Comparators
	Multi-Fetch
	End of Range Condition †ENDING AT‡ Controlled by Database
	WITH REPOSITION for Non-VSAM Databases

	SEND METHOD Statement

	Size of Alphanumeric and Binary Variables
	Size of Data Elements
	Dynamic Variables
	Object Handles
	Optional Parameters
	SPECIFIED Option in Logical Condition
	MASK Option in Logical Condition
	System Variables Now Available under Natural for Mainframes
	New System Variables
	Changed System Variable
	More Precise Results for Floating Point Conversion
	Precision of Floating Point Format Results of an Arithmetic Operation Improved
	Arithmetic Operations with Date and Time Enhanced
	Evaluation of SQRT for †Un‡Packed Number Enhanced
	Substring Evaluation in MASK Corrected
	New Compiler Options

